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Chapter 1: Motivation and Research Objective
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Motivation

• Small Suborbital Launch Vehicle

• Mission for microgravity experiments; high-altitude exploration; rapid payload delivery.

• Benefits of reuse: repeatable operations; lower operating cost => sustainable high-altitude mission.

• Reusable solutions:
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margin for landing
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margin for landing
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margin for landing

Landing facility Landing zone Runway Landing pad Landing pad Landing pad

Recurring 
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Chute repack - - Reinstall solid fuel Reinstall solid fuel
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Research Objective

• Rocket and Turbojets Propulsion.

• Air-breathing turbojet → less onboard oxidizer.

• Low thrust-to-weight(TWR) → gravity losses.

• Solid rocket booster has high TWR → cover turbojet’s disadvantage.

• Constraints

• Optimize trajectory to gain required momentum in dense air.

• Strong nonlinearity and coupling disrupt optimization of rocket and turbojet scale, control law.

• Prior works

• Simulation-based SQP used to avoid local-
minima and optimize configuration.

• Limitation: simplified motion; fixed controller
gains; unverified under model mismatch.

• System-Level Optimization and Validation

• Goal: co-optimize controller gain and hardware
configuration.

• This study performs 6DoF SQP controller
optimization and verifies under model mismatch.
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Chapter 2: Methodology and Validation Approach
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Methodology

• System-Level Manipulate Variables(Prior study)
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Rocket motor Jet fuel

𝐴𝑓

Nozzle(𝑚𝑜) Bulkhead (𝑚𝑏)Propellant Segments (𝑛𝑚𝑒)

 

𝐴𝑜
𝑚𝑓,g

𝑚𝑠

𝑃𝑟

𝐴𝑡 𝑥

ሶ𝑚𝑜, 𝑣𝑜

 Rocket motor Jet fuel

𝑚𝑘

Turbojet (𝑚𝑗)

Jet fuel (𝑚𝑓,𝑗)ሶ𝑚𝑖, 𝑣𝑖  ሶ𝑚𝑖, 𝑣𝑖  

Rocket motor Jet fuel

Turbojets Thrust
𝐹𝑗 = 𝑙 × 𝐹𝑘

Rocket Thrust
𝐹𝑟 = 𝑛 × ሶ𝑚𝑓𝑣o

Optimization parameters for system

Parameter Description.

l [-] Number of turbojets

n [-] Propellant segment factor (number)

mf,j [kg] Jet fuel mass

m(0) [kg] Initial vehicle mass (cost)

Optimization parameters for controller

Parameter Description.

𝑊𝑜 [-] OV weights

𝑊𝑀[-] MV weights
𝑉(𝑦, 𝑦𝑟) Cost function

Payload

• Controller weights(This study)

Manipulated Variables(MV)

𝑢𝑘 = 𝑔𝑥, 𝑔𝑦, 𝑔𝑧 , 𝑇
Τ

Output Variables (OV)

𝑦𝑘 = 𝜔, 𝑝, ሶ𝑝 Τ

MPC
EKF

• Precision landing
• Without rocket booster
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Methodology

• Controller Design
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• PID controller(Prior study)

• Outer-loop PD generates reference acceleration

• Feedforward + PID computes gimbal angles and thrust

• Simulation result

• Stable tracking

• Experiment(landing phase)

• Oscillation under backlash
& rate limits

• Optimize hardware ->
configuration changed ->
gain tunning lack guarantees.
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Methodology

• Controller Design

International Astronautical Congress 2025, Sydney 9

• Nonlinear model predictive controller(NMPC)

• Enforce constraints

• Improve robustness to model-plant mispatch

• Predict model
𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘

𝑦𝑘 = ℎ 𝑥𝑘

• Model states

𝑥 = 𝑞 𝜔 𝑝 ሶ𝑝 𝛿 ሶ𝛿 𝜉 ሶ𝜉
⊤

, 𝑢 = 𝛿𝑢 𝑇𝑢
⊤

𝑦 = 𝜔 𝑝 ሶ𝑝 ⊤

• Control objective

min
𝑢𝑘

෍

𝑘=0

𝑁𝑝−1

𝑦𝑘 − 𝑦𝑟,𝑘 𝑊𝑂

2
+ 𝑢𝑘 𝑊𝑀

2 + Δ𝑢𝑘 𝑊𝑀,𝛥

2

• Tunning objective in this study

𝑊 ∈ 𝑊𝑂, 𝑊𝑀, 𝑊𝑀,𝛥

• The prediction horizon 𝑁𝑝 was manually tuned (timing 
profile) to meet 10 Hz; fixed during optimization.

State Description.
𝑞 Unit quaternion (rotation FRD to NED frame) [-]
𝜔 Angular rate in FRD. [rad/m]

𝑝, ሶ𝑝 Position and velocity in NED [m, m/s]

𝛿, ሶ𝛿 Gimbal deflection and rate in FRD [rad, rad/s]

𝜉, ሶ𝜉 Turbojets throttle state and rate (scalar) [-]
𝛿𝑢, 𝑇𝑢 Gimbal and thrust command [rad, N]
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Methodology

• Controller Design
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• Rigid-body model

• Translational dynamics

ሷ𝑝 = 𝑔0 +
1

𝑚
𝑅𝑓

𝑒 𝑞 𝐹𝑓

𝑔0 = 0 0 9.8 ⊤

• Rotational dynamics

ሶ𝑞 =
1

2
𝜔 ∘ 𝑞, ሶ𝜔 = 𝐽−1𝑀𝑓

• Actuator dynamics

 𝐹𝑓 = σ𝑖=1
𝑛 𝑅𝑖

𝑓
𝐹𝑖 + 𝐹𝐷

𝑓
, 𝐹𝑖 = 𝑇𝜎𝑖 , 0, 0 ⊤

 𝑀𝑓 = σ𝑖=1
𝑛 𝑃𝑐

𝑖 × 𝐹𝑖 + 𝑀𝐷
𝑓

where disturbances 𝐹𝐷
𝑓

 and 𝑀𝐷
𝑓

 
including aerodynamics assumed 0.

Index Description.
𝑓 Body-fixed frame
𝑒 Earth-fixed NED frame
𝑖 Local frame of 𝑖th Turbojet
𝑐 Center of gravity
𝛿 Gimbal for TVC

Symbol Description.
𝑃 Position vector
𝑅 Rotational matrix
𝐹 Force vector
𝑀 Moment vector
𝑇 Max thrust
𝜎 Throttle fraction
𝐽 Inertia matrix

𝑚 mass
𝑛 number of Turbojets
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Methodology

• Controller Design
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• Gimbal model

𝑅𝑖
𝑓

= 𝑅𝛿𝑦
𝑓

𝛿𝑦 𝑅𝛿𝑧
𝛿𝑦

𝛿𝑧 𝑅𝑖𝑦
𝛿𝑧 𝛿𝑖, 𝑥

ሷ𝛿 = 𝐽𝛿
−1 𝑘𝑝𝑒𝛿 − 𝑘𝑑

ሶ𝛿

𝛿 = 𝛿𝑥 𝛿𝑦 𝛿𝑧
⊤

  where 𝛿𝑟 = 𝛿𝑟,𝑥𝛿𝑟,𝑦𝛿𝑟,𝑧
⊤

 is input 𝛿𝑢, 

𝐽𝛿
−1 = 𝑑𝑖𝑎𝑔(𝐽𝑖𝑦𝑦, 𝐽𝛿𝑦𝑦 , 𝐽𝛿𝑧𝑧) denote gimbal

moment of inertia, and 𝑘𝑝, 𝑘𝑑 denote gimbal

servo PD gains

• Turbojet model

𝜎𝑖 =
𝑒𝑘1𝜉𝑖 − 1

𝑒𝑘1 − 1

ሷ𝜉𝑖 = 𝑘2

𝑇𝑢𝑛

𝑇
− 𝜎𝑖 − 𝑘3

ሶ𝜉𝑖

where 𝑘1, 𝑘2, and 𝑘3 represent turbojet
turbine coefficients

+x (heading)

+gy

+gz

+i,y

Index Description.
𝑓 Body-fixed frame
𝑒 Earth-fixed NED frame
𝑖 Local frame of 𝑖th Turbojet
𝑐 Center of gravity
𝛿 Gimbal for TVC

Symbol Description.
𝑃 Position vector
𝑅 Rotational matrix
𝐹 Force vector
𝑀 Moment vector
𝑇 Max thrust
𝜎 Throttle fraction
𝐽 Inertia matrix

𝑚 mass
𝑛 number of Turbojets
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Methodology

• Extended Kalmal Filter (EKF)
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• Model mismatch

• From gimbal model, 
ሷ𝛿 = 𝐽𝛿

−1 𝑘𝑝𝑧(𝑒𝛿) = −𝑘𝑑
ሶ𝛿

where 𝑧(𝑒𝛿) = 𝐷𝑒𝑎𝑑𝑍𝑜𝑛𝑒(𝑒𝛿 , 𝑑), 𝑑 represent
dead zone width.

Ideal model(MPC, EKF) MPC, EKF Model mismatch MPC Model mismatched

• Extended Kalmal Filter (EKF)

• If simulation model’s 𝑑 > 0: model mismatch

• EKF with mismatch in state model: Control failure

• NMPC prediction model using 𝑧(𝑒𝛿): loose of real-time feasibility

• Solution: 𝑑 > 0 in EKF, simplified 𝑑 = 0 in NMPC

Same NMPC weights
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Validation Approach

• High-fidelity simulation for controller verification

• Experimentally identified parameters, validated models
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System-level
(focus on controller) 

optimization

Simulation-based 
verification

Scaled flight test

NMPC

Nonlinear model
(with backlash dynamics)Verification plant

Nonlinear model
(with backlash dynamics)

EKF

Simplified nonlinear model

Physical test

Parameter identification

High-fidelity Simulation

Experimental validation

Parameter identification

Parameter identification

Controller design
Mathematical modeling

Nonlinear model

Validation Approach
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Validation Approach

• High-fidelity simulation for controller verification

• ECEF coordinate based simulation

• Gimbal reaction torque

• Aerodynamic forces

• Wind disturbance

• Additional sate for gimbal spring-damping system

• Turbojet performance modeled as a nonlinear function

• Air density, Mach number.

• Variable mass, moment of inertia and CG
due to fuel consumption.
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Chapter 3: Results and Discussion
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Parameter identification

• Rigid body model experiment

• Mass (𝑚) and moment of inertia (𝐽𝑖𝑦𝑦, 𝐽𝑥𝑥, 𝐽𝑦𝑦)

• Center of gravity Position (𝑃𝑓
𝑐)

• Turbojet model experiment

• Maximum thrust(𝑇), fuel consumption ( ሶ𝑚𝑓)

• Turbojets turbine coefficients (𝑘1, 𝑘2, 𝑘3)

• Gimbal model experiment

• Gimbal moment of inertia (𝐽𝛿𝑥𝑥, 𝐽𝛿𝑦𝑦)

• Gimbal servo PD gains (𝑘𝑝, 𝑘𝑑)

• Backlash width (𝑑)

• Saturation angles, spring damper paratmers
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Parameter identification

• Rigid body model experiment

• Bifilar pendulum method

𝐽 =
𝑚𝑔0𝑏2𝑇2

16𝜋2𝐿
where 𝑏 [m] denote distance between rope, 𝐿 [m] 
represent length of rope, and 𝑇 [s] denote oscillation 
period.

• Oscillation period
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Optical flow Sum & 
FFT analysis
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Experimental Validation
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Scenarios
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• Common mission profile for verification of optimization

• Demonstrate landing phase, max 3 m altitude

• About 60 s flight time

• Scenario I

• Ideal model(zero backlash 𝑑 = 0)

• NMPC with initial weight

• Scenario II

• Mismatched model(with backlash 𝑑 = 1 − 2 𝑑𝑒𝑔)

• NMPC with initial weight

• Scenario III

• Mismatched model(with backlash 𝑑 = 1 − 2 𝑑𝑒𝑔)

• NMPC with optimized weight

• Scenario IV

• Ideal model(zero backlash 𝑑 = 0)

• NMPC with optimized weight
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Results
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• Parameter identification

Symbol Description Value Unit
𝑇 Maximum thrust 52 N

𝑘1, 𝑘2, 𝑘3 Turbine coefficients 5.0e+0, 2.0e+1, 2.0e+1 -
𝑘𝑝,𝛿𝑥, 𝑘𝑝,𝛿𝑦, 𝑘𝑝,𝛿𝑧 Gimbal servo P gains 5.1e-1, 1.5e+1, 1.5e+1 -
𝑘𝑑,𝛿𝑥, 𝑘𝑑,𝛿𝑦, 𝑘𝑑,𝛿𝑧 Gimbal servo D gains 7.6e-3, 4.2e-1, 4.2e-1 -

𝐽𝑖𝑦𝑦 , 𝐽𝛿𝑦𝑦, 𝐽𝛿𝑧𝑧 Gimbal moment of inertia 6.4e-4, 3.8e-2, 3.8e-2 kg·m2

𝐽𝑥𝑥, 𝐽𝑦𝑦 , 𝐽𝑧𝑧 Body moment of inertia 3.1e-2, 5.2e-1, 5.2e-1 kg·m2

𝑚𝑓 Body mass (Dry mass) 4.1e+0 Kg
𝑃𝑓

𝑐
CG position vector (4.0e-1; 0.0e+0; 0.0e+0) m

𝑃𝑓
1

Turbojet 1 Position (1.0e-2; 8.8e-2; 8.8e-2) m

𝑃𝑓
2

Turbojet 2 Position (1.0e-2; -8.8e-2; -8.8e-2) m

𝑅𝑓
1

Turbojet 1 Attitude (x,y,z) (𝜋/4, 0, 0) rad

𝑅𝑓
2

Turbojet 2 Attitude (x,y,z) (5𝜋/4, 0, 0) rad

• Controller weights

Description Initial value Optimal value
Number of state 21
Number of output 9
Number of input 4
Prediction horizon 8
Control horizon [4, 2]
Output constants, 𝜔 ±[2 15 15] 
Output constants, 𝑝𝑧 [0,-inf]
Output constants, ሶ𝑝x, ሶ𝑝x ±[2 2]
Output weight, 𝑊𝑦,𝜔 [1 1 1] [1.00 1.65 1.65]
Output weight, 𝑊𝑦,𝑝 [3 3 2] [3.00 3.00 2.15]
Output weight, 𝑊𝑦, ሶ𝑝 [2 2 2] [1.77 1.77 1.85]
Input weight, 𝑊𝑢,𝛿 [0.1 1 1] [2.00 0.02 0.02]
Input weight, 𝑊𝑢,𝑇𝑈 [1] [0.00]
Input weight, 𝑊𝑢Δ,𝛿 [5 1 1] [0.30 0.25 0.25]
Input weight, 𝑊𝑢,Δ𝑇𝑈 [1] [0.10]
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Results
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• Scenario I

• Ideal model (no mismatch effects)

• Used to verify NMPC baseline operation
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Results
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• Scenario II

• NMPC Prediction model-hardware mismatch
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Gimbal oscillation

Lateral error increase



Results
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• Scenario III

• NMPC Prediction model-hardware mismatch, with optimized weights
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Lateral error decrease

Altitude error decrease



Results
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• Scenario IV

• Ideal model with optimized weights

• Assuming hardware improvements
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Results
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• Verification optimize result

Scenario I Scenario II Scenario III Scenario IV

Landing error
𝑒𝑥𝑦(60s)

1.9387e-01 1.2430e-01 2.0241e-01 3.4680e-02
I→IV, -82.7%
II→IV, -72.1%

Fuel consumption
Δ𝑚(0 − 60s)

1.7344e-01 1.7537e-01 1.6294e-01 1.6245e-01
I→IV, -6.3%
II→IV, -7.4%

Positon error
𝑒𝑝, RMS

1.1167e+00 9.8689e-01 9.0710e-01 9.3932e-01
I->IV, -15.9%
II→IV, -4.8%

Legend
 Highest 
performance
 Worst performance

Chapter 01 Chapter 02 Chapter 03 Chapter 04



Chapter 4: Conclusion and Future Work
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Conclusion

• Foundation for system-level optimization and experimental validation

• NMPC for a reusable suborbital launcher; SQP controller weight/constraint tuning in simulation
(leveraging prior optimization framework)

• Prior work: PID controller performance coupled to hardware optimization, limiting system-level improvement.
This work: nonlinear MPC robust to hardware variation; controller weights optimized via the same framework

• High-fidelity 6DoF simulation extended; experimental model validation and real-vehicle parameter 
identification

• Four-scenario comparison; optimization yields up to 7.4% reduction in fuel consumption
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Future work

• Full system-level optimization and verification.

• Scaled flight tests of the small suborbital launch vehicle with rocket and jet propulsion with payload (UAV)
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System-level
optimization

Simulation-based 
verification

Scaled flight test

NMPC

Nonlinear model
(with backlash dynamics)Verification plant

Nonlinear model
(with backlash dynamics)

EKF

Simplified nonlinear model

Physical test

Parameter identification

High-fidelity Simulation

Experimental validation

Parameter identification

Parameter identification

Controller design
Mathematical modeling

Nonlinear model

Flight test with system-level optimization and verification



Thank you very much
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